爱看读书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

等效替代,放在工程实践领域,是一种很常见的设计与实现思路。

放在“强人工智能”,则需要切实的考虑清楚,人类,或者说人脑,其思维与认知行为究竟是一种怎样的过程。

“人会犯错误,计算机不会”,这并非是IT专家的调侃,而是严肃的事实。

迄今为止,人类创造出的一切计算机,小到功能孱弱的早期单片机,大到算力ZFlops级别的超级计算机,能够实现的功能,眼花缭乱,无以尽述,但归拢所有这一切功能,不难发现,其本质上完全是人类意志的延续。

这种延续,并不是说人类能轻轻松松的,做到计算机做出的一切。

而是原则上讲,从单片机、到巨型机所做的任何事,原则上讲,一旦脱离运行时间的限制,人类同样也能够完成。

不仅如此,这段话的真实含义,要比字面上呈现的更深刻:

要完成当今时代一切计算机所做的事,人类,但凡有足够长的时间,根本无需动用自身的思维、认知能力,只需有一副听指挥的身体,加上除“MOV、ADD、XOR……”之外一无所有的机器指令。

一旦意识到这点,便可以明白,为何当今时代的计算机,根本上讲,完全无法进行创造性、探索性的科学研究:

根据指令,摆弄一些数据,就能领悟客观规律,那简直就是在开玩笑。

要完成计算机所做的任何事,人类,根本无需动用智慧,这种原则性的判断,为研发组指出了一个关键点。

人类的智慧,与计算机的算力,如果说有什么本质上的差异,就是“出错”。

换成严谨的说法,就是基于细胞架构的模拟式人脑,能够引入一些出乎预料、无法预知的新变量。

而这一特性,在传统的电子计算机体系里,一概视为“干扰”而务必杜绝,否则便难以得到期望的准确运算结果,其突出成就,便是寻常人认识中的“计算机永不出错”。

撇开极小概率的宇宙射线、本底瑕疵等因素,的确,人类制造出的计算机,可以认为具有100%的可靠性,如果最终计算结果与事实不符,绝对是程序的设计、或者初始条件有问题,最终一定会追溯到人的身上。

计算一百次加法,计算机不会错,人也不会。

但是计算一百亿次加法,计算机不出错很寻常,人呢,根本就不可能一个不拉的全做对。

“人脑迟早会出错”的现象,长期以来,在计算机的永不出错面前自惭形秽,自愧不如,但反映到另一个层面,正是这种模拟式、并行式生化系统的“出错”,才让探索性、创造性的科学研究成为可能。

从已知,尝试推断未知,人类的一切科研活动,本质上都未脱出这样的形式。

而这正是计算机,至少到目前为止的计算机,始终做不到的。

计算机能做的工作,譬如说,计算,总归是一项人类交托的任务,是先由人来判断该问题是否有解,如果有,具体的算法是什么,然后将数据与算法交给计算机的逻辑电路去处理,所得结果也要由人去理解,阐述。

即便像AIASG这样的系统,能自主生成程序,实质上,也不过是将一些类似的已有成果排列组合,解决那些早已被人解决过的问题。

路,还是人走出来,计算机只不过是更快的再走一遍,两遍,三遍;

就算再走无数遍,仍没有任何创新。

取而代之的崭新思路,“敛散算法”,则是根据一定的初始条件,在算法的每一步,尝试尽可能多的展开分支,引入额外的发散量,当然这种做法,很快就会让计算量暴增,所以还需要进行“收敛”,通过同样包含随机性的判据,迅速“砍”掉大量无意义的分支。

表面上看,这一先发散、后收敛的做法,与向系统中引入随机变量,并无本质区别,实质上也可以粗糙的这样认为。

区别则在于,算法步骤中引入的变量,并非随机数,而是来自于初始状态库的一切既有知识。

那么就是在穷举吗,似乎是,只不过为了应对完全穷举的计算量暴涨,而必须在每一步进行判断、预计与猜测,将无意义的分支完全消除。

具体到某一个分支,其是否有意义,判断起来也并不容易,此外还要引入额外的随机性,将某些“看起来”无意义的分支,移入另一个线程继续追踪。

这一做法,能避免收敛策略错杀那些切实可行、却不符合既有知识体系的分支。

“敛散策略”的核心思想,是建立在传统计算机的运行之上,此外再加入“关联扰动”与“随机性”,利用这种方式,尝试让AI具备创造性、探索性思维。

这种体系,一开始在验证可行性时,需要的资源量并不太大。

但可想而知,倘若投入到实际运行中,这样的系统必然耗费巨大,哪怕只用来解决一些粗浅的问题,都需要比传统计算机更多的算力,当然,倘若其真能具备“强人工智能”的特质,巨大的投入也是值得的。

“强人工智能”的第一台实验机,所需算力,设计指标大约在1PFlops。

以今天的计算机技术水平,这种规模的算力并不难提供,不过,1PFlops算力能支持的思维、认知,可以达到多高的水平,仅从理论模型出发并无从得知,一切还要在初号机完成并上线运转一段时间后,才能得出结论。

按项目组的计划,从初号机开始,“强人工智能”就应该具备一定的自我演化能力,这种特质,也更接近于人脑的状态。

那么,假以时日,这样的机器能演化到什么状态,就更需要时间来给出答案。

自从掌控一个大区,直到今天,1495年才启动“强人工智能”的研发工作,这种进度怎么说也并不算快。

但在方然看来,情况还好,他并不认为所有大区的管理员都和自己一样,能够洞悉“强AI”定义的内在矛盾,继而认识到,以现有的科学技术水平,人类其实是可以研发出某种程度的自主AI,进而窥破“思维”、“认知”活动的奥秘。

爱看读书推荐阅读:异常生物收容所我家农场有条龙全球进化:开局觉醒SSS级主神都市之兽王位面超级替身我的歌后女友我的专属梦境游戏男神,秦爷很撩人末世系统:心灵终结殿下,您该回家了星际美食女神重生修仙之快穿之旅带着快递驿站穿年代末日回溯:破晓重生之战末世来临,逼我成狠人宿主今天又罢工了全球抽卡:我的抽卡有保底什么年代了,还在传统制卡快穿之女配突然被穿了冒险都市重启高一快穿:总裁攻略手册恐怖故事群末世最卷基地长全民:你都开挂了!还有唯一天赋神级军工系统得分之王重生末世前:手持X系统入国家队红缨记无限技能之游戏世界未来军火智能末日:开局听见老婆心声,她是重生者超级小战士,纳米奇缘末日,我带寝室四大冤种绝地求生娱乐之传奇天王天灾星临诸天我一直在等你——快穿神奇宝贝开局捡到一只闪光小火龙草,我不想死啊!重生之超级食神且看吾等以规则弑神明我在副本体验人生末世诸禽来自末世中的黎明末世之娇软的菟丝花神弓开天录今天大佬也不想开门云霄之顶末世,邻居太太求着进安全屋
爱看读书搜藏榜:末世魔侣我在末日捡空投影视世界无限之旅打造幻想世界快穿之男神游记大具现师我能幻想成真影视世界成神传斩月越界沉沦我在末世食物自由包养校花萝莉星际战场从直播开始邪佛恐怖长生萝莉的赛博世界生存指南维度仲裁者超级掠食者系统快穿被男主养成的那些日子我,人工智能魇日纪元我有一舰载星河我在超神宇宙考古两万年废墟下的人末世异能之莲依无限电影群为死者代言诸天:从屠龙开始融合万物末日我在尸群当中睡大觉末世:大小姐的贴身保镖在港综吃成传奇至强创世超级细菌分身星际最强打工人实锤快穿后我成了反派的心头宠第七小队的XX日常快穿之戏精宿主娇又媚情深案浅之反穿福妻神雕醉公子穿越异世的领主大人影视都市之旅星空:创世祖神终极弑仙系统太阳系之心的呼唤我的暗恋对象变死对头后武破魔天她有特殊逆袭方法末日合成专家变异围城之极度恐惧虚拟神格贼行诸天末世:小心身边的人
爱看读书最新小说:我在现代量子封神黑暗本源恶雌丑又渣?治愈众兽夫后被狂宠末日暗涌:血色异能博弈我的系统,狂揽宇宙科技天狼极夜:雷纹觉醒反派他于无限轮回中清醒沉沦废土齿轮:共生代码末世纹身:我纹十凶末日乱杀星际猎人卡牌:重塑天地规则末世:成为哥布林召唤师外星人都打来了我只能修炼保命极寒主宰:零度末世进化末世大佬成弱雌,星际全员真香了星际武道:炎黄文明崛起纪元修仙纵横末世末世之世界的明天末世:收容所打工日常【末世】她是最强精神操控师末世文恶毒女配?嚣张一日是一日末日地窟:重生之全能主宰末日降临,模拟未来的我无敌了!废土铁躯:星际笑闯逆袭路暗夜之龙末世之宿命全球洪水:我打造私人末日方舟两比兜下去没情绪?我敲是丧尸!开局成为星际舰队最高指挥官重生末日变成猫心声暴露,兽夫们夜夜熬红眼重生智核纪元:AI禁区末日来临,我靠躺平成了大佬恶雌装乖,星际大佬们狂开修罗场暗影都市守护者速通:这个丧尸有点礼貌末世军团系统玉枢三星穹重启末世重启,囤货暴富指南觉醒纪元未知波动废土之上,多摘几次野菜就老实了重生末日前,别人屯物资,你就抢女人?快穿:当柔弱女配后男主们爱惨了量子编织者:末日重构废土:非酋她今天交房租了吗?穹宇溯光录寂灭日:钢铁方舟龙啸凤舞五行天机道墨宸诸天录