爱看读书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

走进不科学正文卷第六百二十章千呼万唤始到来!地下室里。

就在徐云有些出神的同时。

一旁的老郭则有些好奇的看向了王原和高元明,顿了几秒钟,问道:

“老王,老高,永忠同志的这个想法.....你们觉得如何?”

王原和高元明闻言彼此对视了一眼,只见王原斟酌片刻,说道:

“郭工,从技术角度来看,我个人认为氮簇化合物的难度还是比较大的。”

“毕竟如今我们对于小分子物质的了解还是太浅薄了,物质的化学结构是一回事,合成就又是另一回事了。”

“比如我们很早就知道了碳碳键的概念,但至多通过化学反应去引导碳碳键形成,完全做不到分子层面点对点的组合出碳碳键。”

听到王原这番话。

回过神的徐云也下意识点了点头。

活了两百岁的同学应该都知道。

近代科学界对化学结构的认知,最早可以追溯到1831年,也就是艾维琳出生的那一年。

当时李比息发现了雷酸银agonc,而且通过分析证明两种化合物均含一个ag,n,c,o原子。

权威的大主教贝里采乌斯把这种现象定为“同分异构现象”,其中的分是分子式,构是结构,分子式相同而结构不同。

后来凯库勒照葫芦画瓢的提出了甲烷型,这一类型说明碳碳之间也可自相成键,并进而推出乙烷的构造式。

接着1861年,毛熊那边的布特列洛夫正式提出了化学结构的概念。

他认为分子不是原子的简单堆积,而是通过复杂的化学结合力按一定顺序排列起来的,这种原子的相互关系结合方式就是该化合物的化学结构。

在此理论的指导下。

他合成了叔丁醇、异丁烯、二甲基甲醇和某些糖类化合物、发现了异丁烯的聚合反应、研究了丁二烯的异构体、发现了互交异构现象、还提出了同位素的假设。

等到了如今这个时期,化学结构在理论方面已经有了很扎实的研究成果。

但另一方面。

由于仪器精度...直白点说就是工业水平的限制,化学界在技术应用上却依旧浮于表层,空守宝山却无法开采。

这就好比一个阅片无数的老司机,现实里却是个连女朋友都没有的苦逼啾啾啾。

你在小电影里看到了再多体位,空有一身理论在手,也没法在现实上运用成功。

不过面对王原的这番话,于永忠却再次摇了摇头,给出了另一个观点:

“王工,您的这番话....我有点其他看法。”

“首先,正如您所说,全氮化合物的生产难度确实很高,我也承认我们在工艺上很难实现它的生产——别说量产了,哪怕是实验室落地都希望渺茫。”

“但是....如果咱们退一步呢?”

王原顿时一怔,有些费解的问道:

“退一步?这是什么意思?”

“您看。”

于永忠闻言兴奋的抿了抿有些发干的嘴角,提笔指向了自己写出来的结构式,解释道:

“从结构式的类型上看,那类可能存在的氮簇化合物应该有好几种组合型。”

“其中全氮化合物威力显然最大,这玩意儿字如其意,只含有n5集团,类型上我猜测应该有阴阳两类——不过这个问题目前暂时不重要,可以先放到一边不做讨论。”

“我想说的重点是....除了全氮化合物之外,还有重氮化合物、叠氮化合物两个品类呢。”

“例如叠氮化合物....如果我没记错的话,海对面在1956年已经搞出了芳基五唑了,咱们在不久前也掌握了相关技术。“

“也就是我们只要能搞定叠氮钠溶液,理论上这种化合物应该是有概率合成的.....”

听闻此言。

一旁徐云的脑海中,骤然划过了一道闪电。

对啊.....

自己怎么就没想到呢?

在cl20和n5全氮阴离子盐之间,还存在有两种不稳定但可以变得稳定的物质,也就是.....

重氮化合物n2,以及叠氮化合物n3。

与n5的前驱体是芳基五唑一样,叠氮化合物同样有个前驱体,它就是芳基四唑。

芳基四唑的合成原料是叠氮化钠,这玩意可以通过亚硝酸钠与水合肼反应制得:

将水合肼溶在无水乙醚中,在水冷却下加入氢氧化钠和亚硝酸乙酯的混合溶液,在冰冷却下使之反应。

反应完毕后,缓慢加热,使之恢复到室温。

接着析出结晶,抽滤,取出结晶,用甲醇、乙醚洗涤,然后在水中重结晶,可制得叠氮化钠:

c2h5ono+nh2·nh2·h2o+naoh→nan3+c2h5oh+3h2o。

至于肼早在1887年就被柯求斯首先分离了出来,1907年拉希发明了以氨和次氯酸钠反应制备水合肼的方法。

霓虹于1939年在大冢制药厂开始生产水合肼,50代我国的燕京,魔都等地也开始了水合肼的生产,所以水合肼并不是什么稀罕物。

等到叠氮钠溶液生成后。

只要将季铵树脂用dmf、乙醇和去离子水清洗后加入其中,再用甲醇和乙醚冲洗几遍,就可以真空抽滤提取出聚叠氮化合物了。

这一步相对来说比较安全,落锤测试砸不爆,湿润的产物性质也比较稳定。

当然了。

再往下的内容就不能说了.....

总而言之。

从工艺上来说,于永忠的想法似乎确实具备一定的可行性?

妈耶.....

如果兔子们真的能搞出来n3,那乐子可就大了。

毕竟这可是二十世纪中期啊......

诚然。

于永忠的想法也仅仅是存在可行性而已,具体能不能落实、多久才能落实,徐云并不能确定。

但如果一切正常。

即便只是在实验室生产成功,n3也依旧可以用在兔子们的核武器试爆上。

毕竟完整原子弹的起爆炸药大概是2000多公斤,换算成n5...也就是全氮阴离子盐大概200公斤左右,cl20大概600公斤,n3估摸着在400公斤左右。

这种量级的炸药哪怕算上冷爆实验的消耗,也不会超过1.5吨。

1.5吨n3的研发成本对于这个时代任何的个体来说都是个难以负担的数字,但在国家这个庞大的机器面前,那就算不上啥特别高昂的支出了。try{ggauto;} catch(ex){}

爱看读书推荐阅读:都市之兽王我的歌后女友殿下,您该回家了星际美食女神重生修仙之快穿之旅末日回溯:破晓重生之战末世来临,逼我成狠人宿主今天又罢工了全球抽卡:我的抽卡有保底什么年代了,还在传统制卡快穿之女配突然被穿了冒险都市重启高一快穿:总裁攻略手册末世最卷基地长全民:你都开挂了!还有唯一天赋得分之王重生末世前:手持X系统入国家队红缨记未来军火智能超级小战士,纳米奇缘末日,我带寝室四大冤种绝地求生娱乐之传奇天王天灾神奇宝贝开局捡到一只闪光小火龙草,我不想死啊!重生之超级食神且看吾等以规则弑神明我在副本体验人生末世诸禽来自末世中的黎明末世之娇软的菟丝花神弓开天录末世,邻居太太求着进安全屋写给鼹鼠先生的情书灯花笑宿主她帅爆了贫道许仙道门至尊全球轮回,只有我知道港综剧情!未来之树恐怖都市内末日游戏:自选召唤英雄神秘世界的危机与发现关于世界的一己之见氪金不朽你好新时代沙漠体嫤语书年孤站举报:这个神术师说他相信科学
爱看读书搜藏榜:末世魔侣我在末日捡空投影视世界无限之旅打造幻想世界快穿之男神游记大具现师我能幻想成真影视世界成神传斩月越界沉沦我在末世食物自由包养校花萝莉星际战场从直播开始邪佛恐怖长生萝莉的赛博世界生存指南维度仲裁者超级掠食者系统快穿被男主养成的那些日子我,人工智能魇日纪元我有一舰载星河我在超神宇宙考古两万年废墟下的人末世异能之莲依无限电影群为死者代言诸天:从屠龙开始融合万物末日我在尸群当中睡大觉末世:大小姐的贴身保镖在港综吃成传奇至强创世超级细菌分身星际最强打工人实锤快穿后我成了反派的心头宠第七小队的XX日常快穿之戏精宿主娇又媚情深案浅之反穿福妻神雕醉公子穿越异世的领主大人影视都市之旅星空:创世祖神终极弑仙系统太阳系之心的呼唤我的暗恋对象变死对头后武破魔天她有特殊逆袭方法末日合成专家变异围城之极度恐惧虚拟神格贼行诸天末世:小心身边的人
爱看读书最新小说:善人,让我薅点全能大佬在星际横着走月球计划:广寒工程重生:开局造天庭,对抗外星入侵末世重生:开局背刺我的白眼狼队关于送外卖送成黑道大姐大这件事星尘刃:空间破晓家族之星际指挥官被渣男贱女害死后,我在末世躺平都末日了,谁还当舔狗啊第九区我的机械飞升女友迷雾求生:我有一只剑齿虎开局激活末日系统,向全世界宣战末世重生:开局吞噬,我为最强与青梅末世觉醒,系统逼我献祭她锈蚀之花末世咸鱼王,我的安全屋能升级穿越成末世小白花杀疯啦从末世到星海末世:全公司否认18楼存在末日时钟:循环与永恒的史诗星脉觉醒:虚空回响异界求生背靠祖国怎么输?末世:我的避难所连通多元宇宙全民修仙:我的系统能偷属性末世大灾变,哥哥是我的!归一成帝灵笼:我成了龙骨村老板娘无限世界刀术大师核平末世?我创立最强基地行走在诸天万界的人逆星人冰冻星球之寒奥纪元三体之脑域侵蚀末世老魔:觉醒魔功,以杀证道炼假成真:我的虚拟帝国照映现实我的傲娇丧尸女友太可爱了怎么办全民魔域,从九星副本开始无敌末世危机?我召唤合成营平推城市重生,然后开始做计划末日远征:觉醒之战绑定进化房车,我在末世横着走星骸仙途机甲实验体诡墟清理者末世最强拾荒系统代号,全基因携带者:金平凡这里是大夏!禁忌生物止步森林童话勇敢之心进化回档