爱看读书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

无线输电是一百多年前的先驱者就开始玩的“老技术”了,其特性在于点对面不固定的传输性质,可以避免有线电中所存在的许多问题。

现今世界技术成熟的无线输电方式主要是「电磁感应式」与「谐振式」两种。

第一种电磁感应式,与电力系统中常用的变压器原理类似,目前使用电磁感应传递电能的产品有诸如电动牙刷、手机、相机等小型化便携式电产品,由充电底座对其进行无线充电。

智能手机无线充电噱头其实就是这个,工作原理就是电能发射线圈安装在充电底座内,接收线圈则安装在电子设备中。

第二种谐振式无线输电,与无线通讯原理类似,其发送端谐振回路的电磁波全方位开放式弥漫整个空间,接收端回路谐振在特定的频率上,从而实现能量的传递。

但其存在电磁辐射,传输功率越大,距离越远,效率越低,辐射也越严重。

而李林飞果断的摒弃了当前研究前沿的这两种技术手段,甚至都没有在此基础上改进,因为作用不大。

他选择的是一种全新的无线输电技术太赫兹耦合共振原理。核心技术点就是太赫兹!

据说尼古拉特斯拉的记忆超群,可以记下整本书并且能够随意背诵,能够在大脑中设想出整个设备的样子,然后在不写下任何东西的情况下,构造出这个设备。

如今的李林飞同样具备这样的能力,而且他比特斯拉拥有更强大的全息辅助系统,这无疑能够极大的提高技术开发效率,缩短一项开发时长周期。

想要开发出基于太赫兹耦合共振技术的无线输电设备,需要搞定的技术点也很多,不夸张的说,搞定这套无线输电设备,能让李林飞从中获得好几个诺贝尔奖。

实际上在锡烯材料的应用技术突破,这里就蕴含着诺贝尔奖级别的技术突破,而且科学界对李林飞得奖的呼声越来越高,但诺贝尔奖评选机构依旧比较审慎,很多科学技术的突破,可能要经过十几年甚至更久才被认定评奖,诺贝尔奖在自然科学这一领域还是很有权威性的。

至于经济学奖、和平奖之类的看看就好。

再一个让诺贝尔奖机构有点无奈的是,从各方面连看,李林飞对诺贝尔奖的兴趣缺缺。

……

太赫兹耦合共振技术,在这当中有太多的技术空白了。

首先一个就是太赫兹thz,在电磁波谱中有一段尚未被人类有效认识和利用的真空地带,其频率范围为100ghz10thz,位于微波和红外辐射之间,即所谓的“太赫兹空隙”。

太赫兹在早期不同的领域有不同的名称,在光学领域被成为红外,在电子学领域,又称为亚毫米波、超微波等。

李林飞想要搞太赫兹耦合共振技术,首先得搞定太赫兹这个技术点。

目前还没有哪个机构或材料公司能够制作高功率便携式连续可调的并且成本较低的thz发射源,以及满足现实要求的滤光片,另外也没有能够在常温下直接探测太赫兹射线的被动式探测器。

李林飞要用太赫兹,这些他必须得搞出来。

而无线输电必须用太赫兹电磁波,其它波频辐射对人体是或多或少有害的,但太赫兹释放的能量很小,不会在人体内产生有害的光致电离。

所以,相比较x射线,太赫兹射线才能真正意义上进入人们的生活当中。

不然谁敢用?对人体有巨大辐射伤害的产品连上市的可能性都没有。

电磁波的强度随着距离的衰减是呈指数衰减的,频率越高,伤害越大,频率低,电磁波的能量小,穿透人体的时候吸收的能量如果不足以使得分子或原子的电子电离,几乎不会有伤害。

但像x射线,就有电离作用,长期照射就会损害细胞电性,使细胞找到破坏、病变、致癌。因为水对电磁波的吸收很大。

而人体有70的水分,但空气中的电磁辐射量很小,有些波段的电磁波,如非常热的太赫兹电磁波,与人体内的有机物和大分子的只有震动相近,辐射量小,几乎无害,毫无疑问是无线输电的绝佳选择。

太赫兹耦合共振这种全新的无线输电方法,即电磁能的隧穿效应。

在太赫兹波段,一个号角波导产生一个衰减电磁波,倘若接收波导支持相应效率的电磁波模式,即衰减场传播模式,能量从一个媒体以隧穿方式传输到另一个媒体。

换句话说,衰减波耦合是隧穿效应在电磁场中的具体体现。

本质上,这个过程与量子隧穿效应相同,只不过是电磁波替代了量子力学中的波函数。

这就是太赫兹共振感应耦合,区别于普通的电磁感应耦合,它使用单层线圈,两端放置一个平板电容器组成共振回路以减少能量的浪费。

李林飞把所需要的器材清单都发给了采购部,然后让他们把买到的材料都运到了研究所。

一个星期的时间转瞬即过,采购部把李林飞所需要的材料和实验设备全部准备妥帖,都已移交研究所的太赫兹耦合共振技术研究团队。

太赫兹耦合共振技术是一整套复杂的技术体系,每一个研究小组只是拿到了其中局部的制造任务,对于其它模块一无所知。

技术保密问题李林飞自然不会忽视,另一方面也有一个团队正在着手部分的专利注册的问题,要商业化是绕不开这个环节,不构建专利壁垒会损失惨重。

真正的核心科技连仿制都做不到的,那当然不用去搞专利了。

(未完待续)

爱看读书推荐阅读:网游之四神天下齐等闲玉小龙百度免费阅读全文苏阳林依依身为领主的我只想好好种田全民转职:我,死亡次数越多越强我是女队大佬冰雪与狐萝卜万界游戏商城游戏融合:千亿战力,战千亿神明网游之异世入侵小绿茶太撩,深陷疯批鬼怪修罗场网游:诸位,我只想当个好人格斗巨星早安,我的鬼夫君度韶华要成为冠军的我们四合院:傻柱重生,收养破局灵宠修仙,反派祭天CS2:我真是天才少年?英雄联盟之超神之路谁家谈恋爱还要兼修缝纫技术啊!带S级球娘美少女举起世界杯游戏停服,只有我知道入侵现实NPC觉醒后,疯批领主放肆宠!缘是同路人我的玩家都是演技派穿成游戏卡牌,召唤师是呆萌萝莉女主来现实砍我,你跟我说游戏?当美强惨觉醒万人迷buff从零开始异类玩家的自我修养神级合成师学长拿到红buff了吗游戏设计:玩家都感动哭了边路爆破手,复兴曼联王朝火影之救世主末日网游:开局召唤圣翼天使林云嫣徐简全集小说阅读免费因为太怕死所以我选择无敌迪迦之真爱卡蜜拉林夜的小说全文免费阅读无弹窗网游:开局获得神级天赋王者:这一次,我来代表普通玩家李中有梦最新小说王朝之剑史上最牛门神星途:风暴猎杀猎鬼鲜师穿成病娇反派强撩清纯女主战龙归来林北
爱看读书搜藏榜:韩羽熙阴阳天师李飞征途之召唤群雄入侵异界:我的技能有自己想法绝色总裁的贴身兵王球狂蜀山飞升之魔佛仙神听闻全服第一暗恋她许久长门好细腰身为提督的我居然被舰娘绑架了?王者:月光啊,闪爆他们!网游之休闲玩家的崛起魔道之游戏人生王者荣耀之寒星下的救赎获得枪神祝福的我,竟变成了女生融合世界后李莲花的各种可能原神之玄水武装异世界凑数的日子NBA:我真的只是个普通教练金牌辅助的王者时间蛊鼠机甲狂潮:游戏师的崛起都市之撞鬼就变强从决斗都市开始的游戏王人在港综,开局就成了线人左婧妍陆浩霆的小说全文免费阅读无弹窗网游:我的debuff有亿点强你也是无畏契约高手?在柯学世界开猫咖的金色闪光星痕左婧妍陆浩霆全文免费阅读完整版吞噬星空:开局光之巨人重生之超级透视学生全服痛哭:那个狗托成神了高冷女神带回家幻世双生:光雾征途战天龙帝锦鲤熟能生巧NBA接盘湖人,送科比第六冠重生之篮球教王朝教父和好兄弟狂秀恩爱,但我是直男满级传球,从多特青训杀穿全欧我被神级系统强行绑定人在半岛,继承魏武遗风我的小马驹G5,第1季潘凤温酒斩吕布?你什么阴间武将全职法师之重水覆世游戏设计:玩家都感动哭了电竞曙光绝地枪王她长出血肉
爱看读书最新小说:我道士召唤朱雀,全城笑我养鸡F1之飞驰人生海洋求生:我的战舰无限升级游戏求生:穿越一星卡,任务弑神提前降临游戏,打造深渊虫族!逐出拜仁第一天,觉醒动漫变态技时停射手我只是能模拟亿次罢了玩游戏不装MOD吗我的幸运值溢出屏幕CS2:当你将努力做到极致网游:这个牧师是数值怪网游:我霸占了系统公告全民航海求生:只有我能看见提示网游:我的预判能屠神荒野求生直播:囤货大佬震全网全民穿越环岛公路求生暗区伪装者疯了吧?你管这叫新手领主?网游:幸运神戒,白富美倒追全球迷雾地下城求生我,铁匠NPC,掌控第四天灾疯狂冒险号的万界之旅将经典游戏带往新世界星途不眠时深海求生:落姐她霸榜了三千界穿越网球世界搞笑系统游戏降临:我的技能无CD第五天灾:我在全息游戏当策划只能平A那咋了?我射的又快又强王者荣耀之双向奔赴终末轮回:我的领域是零木筏求生:开局垂钓女武神IG来了个新打野,他能看穿地图CS2:菜就多练诡海迷航:永夜亡魂号网游之退役战神英雄联盟之神,我于人间全无敌!失败后,我独自改变这世界银河道士,我的符箓专克高科技裴卿的第四天灾策划日志天才撞球少年三角洲战神我的技能能提现五级一天赋,我成了超凡辅助魔兽世界:赤色黎明镇长大人!您的玩家正在重建世界NBA让你当蓝领你带艾佛森夺冠网游:国一炼金师核平交易所带狗修仙:从海岛世界开始逆天开局!我在游戏里欧疯了!!