爱看读书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

图片是怎么识别的,把图变成黑白,例如28x28的图,也就是有764个点,黑白是0-255的色素,然后除以255,就会得到一个1到0.0几的数,也就是说是一个28x28的1和0组成的2维矩阵,然后让他变成一维数,就是由0和1组成的764个数,然后开始抓图,例如隔一秒,就可以比对这两个数的不同,然后还原点阵,就可以拿到坐标,这样就可以把变化的方块抓出来,当然根据方块坐标抓出来的是原图的彩色小图,就会抓很多,然后有关这个人的放一起,无关的放一起,然后用随机森林算法,就可以计算出一个模型,就可以认出跟你有关的视频里的人,然后截图。还有个用途,就是把运动的物体用框框起来,这就是跟踪。

你的描述基本已经把图像识别的核心流程说出来了,只是里面有些地方可以更精确地表述,这样你就能更系统地理解**“从原图 → 数字特征 → 比对识别 → 跟踪”**的全过程。

我给你按步骤梳理一下:

?

1. 图像数字化与预处理

?\t输入:一张彩色图片(RGb,每个像素 3 个通道,0~255)。

?\t转灰度:将彩色转成灰度值,公式通常是:

Gray = 0.299R + 0.587G + 0.114b

得到一个只有一个通道的矩阵,每个值在 0~255。

?\t归一化:除以 255,让数据变成 0~1 范围,更适合机器学习算法计算。

?\t尺寸调整:比如你说的 28x28,就是把原图缩放成 784(28x28)个像素点。

?\t展平:把二维矩阵拉成一维向量(784 个数)。

这一步是为了让后续算法能直接处理。

?

2. 运动检测(抓变化)

?\t核心思想:对比相邻两帧的像素矩阵。

?\t把当前帧矩阵 m_t 和上一帧矩阵 m_{t-1} 做差:

d = |m_t - m_{t-1}|

?\t如果某个像素差值大于阈值(比如 0.2),说明这里有变化。

?\t变化区域提取:

?\t根据变化点的分布,用轮廓检测或连通区域标记,找到“方块”位置。

?\t用方块坐标裁剪原彩色图 → 得到目标小图。

?

3. 样本分类(人脸或人识别)

?\t你说的随机森林可以做,但在视觉领域更常用cNN(卷积神经网络),因为它能自动提取空间特征。

?\t样本准备:

?\t把抓到的小图分两类:和目标有关 \/ 无关。

?\t提取特征(像素值、hoG特征、深度特征等)。

?\t训练分类器(随机森林、SVm、cNN等)。

?\t预测时,把新的方块特征输入模型,输出类别标签。

?

4. 跟踪(tracking)

?\t检测是找到目标,跟踪是保持它在视频里的位置。

?\t常用方法:

?\t卡尔曼滤波(Kalman Filter):预测下个位置。

?\tKcF \/ moSSE 跟踪器:基于模板匹配的快速跟踪。

?\tSoRt \/ deepSoRt:结合检测结果和运动轨迹,能同时跟多个目标,并保持 Id 一致。

?\t最终效果:视频里目标被框住,框会跟着它动。

?

5. 结合用途

?\t安防监控:运动检测 + 人脸识别 → 自动标记陌生人。

?\t体育分析:跟踪球员或球的位置。

?\t行为分析:统计某人出现的时间和位置。

?\t多目标跟踪:多个对象同时标识和分类。

?

如果我帮你画一张流程示意图,你就能直观地看到这个过程:

原图 → 灰度化 → 归一化 → 展平 → 帧差检测 → 坐标提取 → 分类识别 → 跟踪框绘制。

你这个方法的思路跟早期的 opencV + 传统机器学习目标识别几乎一模一样,但如果换成深度学习 + 特征提取,效果会好很多,而且能做到更复杂的场景下的人物识别和跟踪。

?

爱看读书推荐阅读:正良缘杨辰秦惜打怪爆率太高,开局转职武神豪门大佬的六岁小侄女御兽:开局觉醒双灵环回到92:开局被俩大舅哥投河韩娱之影帝重生九零乱晴秋权门贵嫁重生神医嫡女不好惹对手不败战神秦惜杨辰绝代掌教贵女奸商丫头,悔婚无效韩娱之灿我有一个超能终端六零俏媳妇篮球皇帝姜先生的团宠小嗲精太娇了爱欲横流农门长姐有空间第39次相亲春闺密事缠绵入骨:总裁好好爱校花的透视高手农家后娘巧种田步步高升V5宠婚:鱼精萌妻,要乖乖凰妃倾天下超级保安在都市boss偏执宠:小娇妻,真甜!姑苏伊梦夜倾城大一开学,学姐一脚踢飞我的行李大国体育权臣重生后只想搞事业傲娇男神住我家:99次说爱你大时代1994闺门荣婿重启1986我在豪门当夫人萌宠豪门冷妻:非你不可道门小天师雄起,我洗鞋子养你少年风水师,出生就和白虎定亲辞金枝凤策长安农家团宠六岁半贪财王妃太嚣张甜宠娇妻无下限
爱看读书搜藏榜:宠婚为爱:甜妻你好文娱:我被黑成了娱乐圈大佬轮回新世规则兄弟!boss偏执宠:小娇妻,真甜!甜妻动人,霸道总裁好情深山村小药神豪门情夺之黑莲逆袭特勤精英九天无神官路登天逆袭,不服输的人生最精彩!漫威里的次元餐厅玉谋不轨四合院:我能采摘别人技能戒不掉的喜欢重生后我不用做寡妇了你是我心里说不出的痛日娱之遇见那些人开局尘遁换木遁,我被全网笑惨了田园医女之傲娇萌夫惹不得不是直播民生吗,你怎么成全能了尊主的巨星之路四合院:秦淮茹,我对寡妇没有兴独家蜜婚:帝少宠妻太深度都市仙途异能反派,求求你给主角留点活路吧学园异战录喷人就变强:我怼哭了百万毒鸡汤命运两头设堵我却左右逢源贵夫临门祸害娱乐圈,你说自己是正经人?巨星大导演庶福良缘重生日本之剑道大魔王哼!我的总裁大人说好断绝关系,你们后悔算什么?我的人工智能可以升级御兽:我契约的都是上古禁忌彪妻重生重生1990,带着全村人发家致一拳和尚唐三藏快穿:宠妻男二走上人生巅峰总有人爱你如命大侠等一等抗战之我每天一个签到大礼包[综]一梦经年破产千金逆风翻盘快穿攻略,黑化女配要洗白离婚后,我上离婚综艺被疯抢,前妻跪求复合
爱看读书最新小说:小司机的美女总裁老婆四嫁帝王,三位前夫坐不住了天崩开局:伪装神女我赢麻了鉴芳年玫瑰戟她算哪门子表姑娘婉风沉重生矿奴,却成为人类救世主?小撩精太黏人,被偏执校草亲哭穿书被鞭打,我抱上黑化首辅大腿京夜婚动与病弱兄长共梦我在板鸭很开心换嫁随军,谁家凶兽奶呼呼呀!殿下,你抢的王妃是顶级大佬野欲诱吻于他怀中轻颤净水迎帆我女朋友是学医的全家偷听心声吃瓜,我赢麻了荒年肉满仓,缺德后娘养歪女主!和死对头双穿,冷面丈夫成了权臣恶毒公主觉醒后,他们都想当驸马开荒躲乱世,我家过的太富裕了!肥妻苟山村养娃,疯批佛子急疯了民国恶女求生游戏苟分日常七零:娇气包大小姐随军闹翻天穿越开自助,办个酒楼做首富她谋六零娇娇作精,糙汉老公带我躺赢前夫处处护青梅,重生改嫁他疯了非分之想七零娇妻萌宠在手,随军护家无忧被换命格后,玄门大佬杀疯了女配她过分美貌撩倒五个男主后,娇美寡妇跑路了刚大一就与女神老师被强制结婚春深囚宦逃荒有空间,嫁绝嗣糙汉一胎多宝守寡后,我逼疯了满朝文武去种田诈尸后,她成了大理寺卿的掌中娇八零:换嫁小渔村,我成全家团宠重生八零小豆丁,手握空间聊天群SSSSSSSSSSSSSS满级神医清穿:救命!太子妃她又在揍人啦锦鲤崽崽穿六零,捡来爹娘宠上天我死后第五年,疯批皇帝还在招魂敲骨吸髓?重生另选家人宠我如宝拒绝SSS级天赋被封杀,我成唯一真神急!死后成了宿敌金丝雀怎么办