爱看读书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

关于“连续性”:目前来看,这一假设无疑需要保留——至少从几何与算术的应用角度出发是如此,因为在这些应用中,相关函数的连续性是“连续性公理”的推论。但另一方面,“定义群的函数具有可微性”这一假设,在几何公理中只能以“牵强且复杂”的方式表述。

因此,问题就产生了:能否通过引入合适的新变量与新参数,将任意群都转化为“定义函数可微”的群?或者至少在一些简单假设的帮助下,将群转化为“可应用李的方法”的群?

根据李提出(但由舒尔(Schur)首次证明)的一个定理[10][11]:当群满足“可迁性”,且假定“定义群的函数存在一阶及某些二阶导数”时,上述“转化为解析群”的过程总是可行的。

我认为,对于“无限群”,研究类似问题也具有重要意义。此外,这还会将我们引入“函数方程”这一广阔且有趣的领域——此前,人们研究函数方程时,通常都会假定涉及的函数具有可微性。

尤其是阿贝尔(Abel)曾巧妙处理过的函数方程[12]、差分方程,以及数学文献中出现的其他方程,它们本身并未直接要求“伴随函数必须可微”。我在变分法中寻找某些存在性证明时,就曾直接遇到这样的问题:如何由“差分方程的存在性”证明“所讨论函数的可微性”。

因此,在所有这些情况下,都会出现一个共同问题:在不假定“函数可微”的前提下,通过适当修正,原本针对“可微函数”得出的结论,能在多大程度上仍然成立?

还需补充的是,闵可夫斯基在其上述着作《数的几何》中,以函数方程

f(x_1 + y_1, x_2 + y_2, \\dots, x_n + y_n) \\leq f(x_1, x_2, \\dots, x_n) + f(y_1, y_2, \\dots, y_n)

为起点,实际上成功证明了“该函数存在某些微商(导数)”。

但另一方面,我想强调一个事实:确实存在“仅以非可微函数为解”的解析函数方程。例如,我们可以构造一个“一致连续但非可微的函数f(x)”,它是以下两个函数方程的唯一解:

f(x + \\alpha) - f(x) = g(x)

f(x + \\beta) - f(x) = h(x)

其中\\alpha与\\beta是两个实数,且对所有实数x,g(x)与h(x)都是“正则解析的一致函数”。

构造这类函数的最简单方法,是借助三角级数,采用与博雷尔(borel)类似的步骤——皮卡(picard)近期指出[13],博雷尔曾用这种方法构造出“某解析偏微分方程的双周期非解析解”。

[10]李-恩格尔(Lie-Engel),《变换群理论》(theorie der transformationsgruppen),第3卷,莱比锡,1893年,第82、144节。

[11]《论表示有限连续变换群的函数的解析性质》(Ueber den analytischen charakter der eine endliche Kontinuierliche transformationsgruppen darstellenden Funktionen),《数学年刊》(math. Annalen),第41卷。

[12]《全集》(werke),第1卷,第1、61、389页。

[13]《数学分析中的若干基础理论》(quelques théories fondamentales dans lanalyse mathématique),克拉克大学演讲(conférences faites à clark University),收录于《综合科学评论》(Revue générale des Sciences),1900年,第22页。

6. 物理学公理的数学处理

对几何学基础的研究,引发了这样一个问题:像处理几何学那样,借助公理来处理那些数学占据重要地位的物理学科;其中最主要的是概率论和力学。

关于概率论的公理[14],在我看来,有必要在对其进行逻辑研究的同时,为数学物理(尤其是气体分子运动论)中的平均值方法,提供严格且完善的推导。

物理学家们已经开展了多项关于力学基础的重要研究;我在此提及马赫[15]、赫兹[16]、玻尔兹曼[17]和福尔克曼[18]的着作。

因此,非常有必要让数学家也参与到力学基础的探讨中来。

例如,玻尔兹曼关于力学原理的研究提出了一个问题:将他仅简要提及的、从原子论观点推导到连续体运动定律的极限过程,进行数学上的完整推导。

反过来,人们也可尝试从一套公理出发,通过极限过程推导出刚体运动定律;这套公理基于“充满整个空间的物质其状态连续变化”的思想,而物质的状态由参数来定义。

因为不同公理系统之间的等价性问题,在理论层面始终具有重要意义。

若要以几何学为范本处理物理学公理,我们首先会尝试用少量公理,涵盖尽可能广泛的物理现象类别,随后通过添加新公理,逐步推导出更具特殊性的理论。

与此同时,李(Lie)的无限变换群深刻理论,或许能为分类原则提供依据。

数学家不仅要关注那些贴近现实的理论,还应像在几何学中那样,关注所有逻辑上可能成立的理论。

他们必须时刻保持敏锐,以全面梳理从所设公理系统中可推导出的全部结论。

此外,数学家有责任在每一种情况下,精确验证新公理与先前公理是否相容。

物理学家在其理论发展过程中,常常会因实验结果而被迫提出新假设,但对于这些新假设与旧公理的相容性,他们仅依赖实验或某种物理直觉来判断——这种做法在严格的理论逻辑构建中是不可接受的。

在我看来,验证所有假设相容性的工作也十分重要,因为为获得这种验证,我们必然会被迫对各公理进行精准表述,而这是最有效的推动方式。

到目前为止,我们仅探讨了与数学学科基础相关的问题。

事实上,对一门学科基础的研究始终极具吸引力,而检验这些基础也始终是研究者面临的首要问题之一。

魏尔斯特拉斯曾说:“始终要牢记的最终目标,是达成对学科基础的正确理解[19]。

但显然,要在科学领域取得进展,对特定问题的研究必不可少。”

的确,要成功研究一门学科的基础,就必须深入理解其特殊理论。

只有彻底且详细地了解建筑用途的建筑师,才能为建筑奠定坚实的基础。

因此,我们现在转向数学各分支的特定问题,首先来探讨算术与代数。

[14]参见博尔曼(bohlmann)的《论保险数学》(Ueber Versicherungsmathematik),收录于克莱因(Klein)与基克(Kiecke)编撰的《论应用数学与物理学》(Ueber angewandte mathematik und physik),莱比锡,1900年。

[15]马赫(mach),《力学及其发展》(die mechanik in ihrer Entwickelung),莱比锡,1901年,第4版。

[16]赫兹(hertz),《力学原理》(die prinzipien der mechanik),莱比锡,1894年。

[17]玻尔兹曼(boltzmann),《力学原理讲义》(Vorlesungen uber die principe der mechanik),莱比锡,1897年。

[18]福尔克曼(Volkmann),《理论物理学研究导论》(Einfuhrung in das Studium der theoretischen physik),莱比锡,1900年。

[19]《数学年刊》(math. Annalen),第22卷,1883年。

7. 某些数的无理性与超越性

埃尔米特(hermite)关于指数函数的算术定理,以及林德曼(Lindemann)对该定理的推广,无疑会受到历代数学家的推崇。因此,正如A.胡尔维茨(A. hurwitz)已在两篇有趣的论文[20]《论某些超越函数的算术性质》(Ueber arithmetische Eigenschaften gewisser transzendenter Funktionen)中所做的那样,沿着这条已开辟的道路继续深入研究,便成为一项亟待开展的任务。故而,我想概述一类问题,在我看来,这类问题应作为接下来的研究重点。在分析学中,某些重要的特殊超越函数,会在自变量取某些代数值时得到代数函数值,这一现象在我们看来尤为显着,值得深入探究。事实上,我们通常认为,即便自变量仅取代数值,超越函数的值一般也应为超越数;尽管众所周知,存在一些整超越函数,即便对所有代数自变量,其函数值均为有理数,但我们仍有充分理由认为,例如指数函数(文中未明确写出具体形式,此处按上下文保留“指数函数”表述),虽显然在自变量取所有有理值时函数值为代数数,但另一方面,当自变量取无理代数值时,其函数值始终为超越数。我们也可将该论断用几何形式表述如下:

在一个等腰三角形中,若底角与顶角的比值为代数数但非有理数,则底边与腰长的比值始终为超越数。

尽管该论断表述简洁,且与埃尔米特和林德曼已解决的问题具有相似性,但我认为,要证明这一定理难度极大;同样难以证明的还有下述命题:

对于代数底数(文中未明确写出具体符号,此处按上下文保留“代数底数”表述)和无理代数指数(文中未明确写出具体符号,此处按上下文保留“无理代数指数”表述),表达式(文中未明确写出具体形式,此处按上下文保留“表达式”表述),例如数(文中未明确写出具体数,此处按上下文保留“数”表述)或(文中未明确写出具体数,此处按上下文保留“或”后的留白),始终表示一个超越数,或至少是一个无理数。

可以肯定的是,要解决这些及类似问题,我们必须借助全新的方法,并且需要对特殊无理数与超越数的本质形成新的认识。

[20]《数学年刊》(math. Annalen),第32卷,1888年。

8. 素数问题

近来,阿达马(hadamard)、德拉瓦莱-普桑(de la Vallée-poussin)、冯·曼戈尔特(Von mangoldt)等人在素数分布理论研究中取得了重要进展。然而,要完全解决黎曼(Riemann)在其论文《论小于给定数值的素数个数》(Ueber die Anzahl der primzahlen unter einer gegebenen Gr?sse)中提出的问题,仍需证明黎曼一个极为重要的论断的正确性,即:由级数(文中未明确写出具体级数,此处按上下文保留“级数”表述)定义的函数(文中未明确写出具体函数符号,此处按上下文保留“函数”表述)的所有零点,除了众所周知的负整数实零点外,其余零点的实部均为(文中未明确写出具体数值,此处按上下文保留“实部均为”后的留白)。一旦成功证明这一论断,接下来的问题便在于更精确地验证黎曼提出的“小于给定数值的素数个数”的无穷级数公式,尤其要确定:小于数值(文中未明确写出具体符号,此处按上下文保留“数值”表述)的素数个数与(文中未明确写出具体对数形式,此处按上下文保留“与”后的留白)的积分对数之间的差值,在(文中未明确写出具体变量,此处按上下文保留“在”后的留白)中,其无穷大的阶数是否确实不超过(文中未明确写出具体阶数,此处按上下文保留“不超过”后的留白)[21]。此外,我们还需确定:在统计素数个数时所观察到的素数偶然聚集现象,是否确实与黎曼公式中那些依赖于函数(文中未明确写出具体函数符号,此处按上下文保留“函数”表述)的首个复零点的项有关。

在对黎曼素数公式进行详尽研究之后,或许我们终将有能力尝试严格证明哥德巴赫问题[22],即:每个整数是否都可表示为两个正素数之和;进而研究另一个着名问题,即:是否存在无穷多对差值为(文中未明确写出具体差值,此处按上下文保留“差值为”后的留白)的素数对;甚至研究更具一般性的问题,即:对于线性丢番图方程(文中未明确写出具体方程,此处按上下文保留“线性丢番图方程”表述)(其中给定的整系数两两互素),是否总能找到素数解(文中未明确写出具体解的符号,此处按上下文保留“素数解”表述)和(文中未明确写出具体解的符号,此处按上下文保留“和”后的留白)。

但在我看来,下述问题同样有趣,且或许适用范围更广:将有理素数分布的研究成果应用于给定数域(文中未明确写出具体数域符号,此处按上下文保留“数域”表述)中的理想素数分布理论——这一问题的研究方向是考察与该数域相关的、由级数(文中未明确写出具体级数,此处按上下文保留“级数”表述)定义的函数(文中未明确写出具体函数符号,此处按上下文保留“函数”表述),其中求和范围遍历给定数域(文中未明确写出具体数域符号,此处按上下文保留“数域”表述)的所有理想(文中未明确写出具体理想符号,此处按上下文保留“理想”表述),而(文中未明确写出具体符号,此处按上下文保留“而”后的留白)表示该理想的范数。

在此,我还可提及数论中的另外三个特殊问题:一个涉及互反律,一个涉及丢番图方程,还有一个来自二次型领域。

[21]参见h.冯·科赫(h. von Koch)即将发表于《数学年刊》的一篇文章[第55卷,第441页]。

[22]参见p.施泰克尔(p. St?ckel):《论哥德巴赫经验定理》(uber Goldbachs empirisches theorem),《哥廷根皇家科学协会通讯》(Nachrichten d. K. Ges. d. wiss. zu G?ttingen),1896年;以及朗道(Landau)的相关文章,同刊,1900年。

爱看读书推荐阅读:汴京小食堂Dan与落下遇见你,何其幸运潇洒小道士万界神豪:咸鱼倒卖记救驾女帝被流放,爆兵成皇你哭什么?被系统砸脸后,我与钟离互换身体崩坏三:【我的系统有问题】快穿:把冷情佛子诱拐回家李青踏上修真途重生怒甩前夫,给崽亲父王腾位置我是魔法学院柔弱的白月光学妹黑化后,小叔叔被我虐到心碎斗罗V:开局被千仞雪看上,小舞要贴贴佛系大小姐穿越古代悠闲生活快穿之好男人修炼指南奥特大剪辑:盘点光之国裂开了!嫁妖夫,算了,凑合过吧重回七零,嫁给科研大佬生三宝学法律的算命大佬,很常见吧?我下山娶妻,清冷师尊失控了天降崽子!霸总追妻带娃弃后她在现代活成顶流我在崩坏转生成芽衣弃妇掉马后,怒打渣男脸!疯批帝姬嫁给摄政王后雄起了魔瞳修罗穿越星际,我娶了帝国最强o斗罗:重生教皇,多子多福穿越火影陪四代目长大恋爱脑醒悟,我竟成了总裁夫人!白月光身份曝光,禁欲祁总跪碎膝盖断亲单开族谱,柔弱表小姐不好欺小财迷只想躺平,霍少的摆烂甜妻异世:没灵气咋修真快穿之我在狗血虐文当女主网球王子:龙马的姐姐在冰帝睡前故事嗯哼!我家超市通三千位面重生之冷面王爷的娇俏王妃穿越到星际成神彼岸花与雪莲花灵魂摆渡:我师傅是九叔灵气复苏别逞强,我是外挂贩卖郎!末世屯物资摆脱圣母诅咒婚女重生自救指南快穿:所有人都爱绿茶美人凹凸世界之与美好失之交臂让你去挖矿,你却成了夜之城的王总裁,有四个萌娃说是您家崽儿
爱看读书搜藏榜:勇者队伍里的普通人穿越成废柴,驭万兽,瞳术定乾坤九转归幽地狱病院咒术回战:我成了五条悟的姐姐浅风不及你情深次元:我只是一个路过的赛亚人!骑士君的非凡之路猎户家的憨子夫郎诸天影视莽夫开局欢乐颂开局大宗门,我却意外成了散修太子妃手握空间踏仙路觉醒变异植物系,她在末世横行了毕业了好好爱照进深渊的月亮幽冥之契逆天,影后视后全是我不良人:悟性逆天,震惊不良帅述录说你私生子命贱,你带七个老婆造反?抗战雄鹰,开局就抢鬼子战斗机重生赶海文里,我是路人甲离婚后遇见年下白月光快穿年代:拿下病娇反派生崽崽啦人在娘胎,我邦邦给女帝两拳穿越魔法纪元之至尊女法皇魔尊的白月光是路人甲禁墟迷城国运强不强,全看宴姐浪不浪!正道诛天一剑闯九霄诸天修行,从功夫开始爱在梦里等花开少年歌行之不染凡尘快穿:千劫慕婉与默同行遥知殊途神罚圣域:铁子的武神之路离婚当天,慕小姐改嫁前夫死对头君乃天上客穿成妖族太子后,美人师尊日日宠三生瑾瑜四合院之成就非凡男人三十,成功逆袭重回身体后,靠着现代科技鲨疯了斗破:我可以加点修行快穿:一本爽文中的爽文你我,一别两宽穿越1960四合院钓鱼又打猎穿书七零,捡个便宜老公宠到底约战里的咸鱼修仙
爱看读书最新小说:海贼王:我是副船长港综:卧底靓坤身边我成最大庄家旗袍扣里的玄机港宗:从军装警开始的护国之路守界者:从修仙归来的豪门少爷HP未蒙救赎hp斯莱特林的送子游戏漫威:卡玛泰姬唯一真神,李宇一拳:劳资无证骑士!不吃牛肉!他的温柔,蓄谋已久龙族:决定成为大姐头超市通古今!囤货养活十万大军鬼灭进修呼吸法,红A是我经验包四合院:兵王归来,开局爽翻了共情系统,宿主她又美又飒风水顾问青莲居剑仙斩神之龙族君念浅浅夫妻穿,抄家后,一路躺赢到边关逆仙纪源旋风少女之心萱快穿:神明重启计划同桌是亲妈中国民间奇闻诡事录惊鸿照影:青楼掌局人废柴丹修:万灵归源图带我逆天改大周深宫:我以月魂重历真相轮回的尽头是你银河烙摊师惊!满级大佬她被逼婚!我的种田KPI通古今穿到荒年:我带着五位相公去逃荒嚯!好家伙,居然穿越成了大海盗八零改嫁绝嗣大佬,随军后成团宠老太太裸辞做保姆家里家外杀疯了人在漫威当奶爸,开局领养布罗利崩坏:被遗忘的她琴酒也要重生!仙踪难觅四合院之我什么都会亿点点综穿:小世界学技能她太上瘾闺蜜说她爸不行,领证后却醉酒行凶重回生产日,拒养白眼狼多宝风云录杀手之王:判官棋魂之有始有终四合院之长途司机在无尽副本中我靠老婆活下来豪门家族之遇见死亡