爱看读书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

梅珑镇微笑着回应,那笑容如春日暖阳般温暖。她的眼神中满是温和与亲切,轻轻抬手,做了个请坐的手势,说道:“小萱,我也听说了你回来为家乡创业的事,真为你感到骄傲!咱们这一代接着一代努力,团结村的未来肯定充满希望。”

说着,她微微歪头,眼中闪过一丝好奇,“我最近了解到流体力学在光纤激光技术里有不少应用,感觉和我研究的领域有不少相通的地方,咱们正好可以好好探讨探讨,说不定能碰撞出不一样的火花。”

小萱眼睛一亮,兴奋得身体往前凑了一大截,双手紧紧交握在身前,仿佛在努力抑制内心的兴奋。她连忙说道:“太好了!梅阿姨,就拿散热系统设计来说,” 说着,她一边用手在空中生动地比划着散热通道的形状,一边解释,“光纤激光器在工作的时候会产生大量的热量,要是不能及时有效地散热,激光器的性能和稳定性都会大打折扣。我们现在利用流体力学原理,设计了液体冷却系统。” 说到这儿,她微微皱起眉头,眼神中透露出一丝忧虑,似乎回忆起了设计过程中那些棘手的难题,“通过冷却液在散热通道中流动来带走热量,依据对流换热理论,合理设计散热通道的形状、尺寸,还有冷却液的流速这些参数,确实能大大增强热量交换效率,保障激光器稳定运行。可是在实际操作中,想要确保冷却液均匀流动,不出现流动死角,真的太难了。我们尝试了很多次,效果都不太理想。”

梅珑镇认真地听着,不时轻轻点头,眼神专注地看着小萱。她微微眯起眼睛,陷入了沉思,片刻后说道:“这确实是个关键问题。” 说着,她抬起手托住下巴,思考得更深入了些,“我觉得可以借助一些模拟软件,像计算流体力学(cFd)模拟,提前对冷却液的流动情况进行全面分析,这样就能更精准地优化设计,说不定能更好地解决这个难题。通过模拟,我们可以提前看到不同设计方案下冷却液的流动状态,避免在实际操作中走弯路。”

小萱恍然大悟,眼睛一下子睁得大大的,忍不住拍了下自己的脑袋,说道:“梅阿姨,您这个建议太棒了!我之前怎么就没想到呢!” 她迅速地从口袋里掏出小笔记本和笔,身体微微前倾,笔尖在纸上快速舞动,认真记录下来,还不忘在旁边写下自己的一些思考和疑问。“对了,在激光增益介质研究方面,流体力学也起着至关重要的作用。” 她抬起头,眼神专注而明亮地看着梅珑镇,“有些光纤激光器采用液体增益介质,研究它的流动特性,能优化其在光纤中的分布和传输过程,提高激光产生的效率和质量。” 她一边说,一边用手指在空中画着光纤的形状,模拟增益介质在其中的流动,“而且,流体的粘性、表面张力这些因素,会影响增益介质在光纤中的填充效果,还有光与物质的相互作用过程,进而影响激光器输出性能。但这些因素相互交织,牵一发而动全身,研究起来特别复杂,感觉就像一团乱麻,很难理清头绪。”

梅珑镇耐心地听完,轻轻拍了拍小萱的肩膀,眼神中满是鼓励:“复杂是复杂了点,但也不是没有办法。科研不就是不断挑战难题的过程嘛。” 她微微侧头,思考了一下,“可以从基础实验入手,一步一个脚印,逐步研究各个因素的影响规律。比如先固定其他条件,单独研究粘性对增益介质填充效果的影响,这样或许能把问题简化一些。从简单的情况开始,慢慢积累经验,再去攻克更复杂的问题。”

小萱听后,眼睛里闪烁着感激的光芒,用力地点点头,在笔记本上又快速记录了几笔,还在重点内容下面划了线。接着,她又说道:“在光纤制造过程中,流体力学原理能优化拉丝工艺。玻璃原料融化后拉制成光纤时,玻璃液的流动状态对光纤质量和性能影响重大。” 她双手在空中做出拉伸的动作,模拟拉丝的过程,“精确控制玻璃液的流速、温度分布,还有拉丝过程中的应力分布,能保证光纤的直径均匀性和内部结构稳定性。不过,实际生产中要精确控制这些参数,对设备和技术的要求特别高。我们现有的设备在精度上还是差了一些,很难达到理想的效果。”

梅珑镇鼓励地笑了笑,眼神坚定而充满力量,说道:“这确实是个挑战,但也是机遇。你可以和设备供应商紧密合作,一起研发更先进的设备,满足精确控制的需求。把你的需求明确地告诉他们,双方共同努力,肯定能取得突破。说不定这次合作还能带动整个行业的技术进步呢!” 说着,她拍了拍小萱的手背,给予她力量和信心。

随后,小萱又和梅珑镇探讨起流体力学在激光谐振腔设计中的应用。小萱微微皱着眉,表情认真而严肃,说道:“在激光谐振腔设计里,散热优化特别重要。谐振腔内的光学元件受热不均,会产生热应力和热透镜效应,严重影响激光输出质量。” 她用手在空中仔细地描绘着谐振腔的轮廓,“我们可以利用流体力学原理设计冷却通道,通过cFd模拟来优化通道设计。还有模式控制,在谐振腔内引入流体结构,能控制激光的传播和模式分布,满足不同应用场景的需求。但找到合适的流体结构和控制参数,还需要大量的实验和研究。每次实验都像是在黑暗中摸索,不知道什么时候才能找到正确的方向,真的很考验耐心和毅力。” 说着,她无奈地摇了摇头,脸上露出一丝疲惫的神情。

梅珑镇看着小萱,眼神中带着肯定和鼓励,说道:“没错,这需要不断尝试和探索。科研的道路从来都不是一帆风顺的,每一次失败都是向成功靠近的一步。你可以参考一些类似领域的研究成果,说不定能找到新的思路。多看看别人是怎么做的,从中获取灵感,再结合自己的实际情况进行创新。” 她微微歪头,给小萱建议道。

爱看读书推荐阅读:正良缘杨辰秦惜打怪爆率太高,开局转职武神豪门大佬的六岁小侄女御兽:开局觉醒双灵环回到92:开局被俩大舅哥投河韩娱之影帝重生九零乱晴秋权门贵嫁重生神医嫡女不好惹不败战神秦惜杨辰绝代掌教贵女奸商丫头,悔婚无效韩娱之灿我有一个超能终端六零俏媳妇篮球皇帝姜先生的团宠小嗲精太娇了爱欲横流第39次相亲缠绵入骨:总裁好好爱农家后娘巧种田步步高升V5宠婚:鱼精萌妻,要乖乖凰妃倾天下超级保安在都市boss偏执宠:小娇妻,真甜!姑苏伊梦夜倾城大一开学,学姐一脚踢飞我的行李大国体育权臣重生后只想搞事业傲娇男神住我家:99次说爱你大时代1994闺门荣婿重启1986我在豪门当夫人萌宠豪门冷妻:非你不可道门小天师雄起,我洗鞋子养你辞金枝农家团宠六岁半贪财王妃太嚣张甜宠娇妻无下限缠绵入骨:总裁好好爱我老婆是传奇天后漫威里的莫高雷旅店我的幻想生物婚意绵绵,神秘老公晚上见替嫁甜妻:您的夫人A爆了
爱看读书搜藏榜:宠婚为爱:甜妻你好文娱:我被黑成了娱乐圈大佬轮回新世规则兄弟!boss偏执宠:小娇妻,真甜!甜妻动人,霸道总裁好情深山村小药神抗战:撼山易撼顾家军难豪门情夺之黑莲逆袭特勤精英九天无神官路登天逆袭,不服输的人生最精彩!漫威里的次元餐厅我,最强雇佣兵,代号送葬者!玉谋不轨四合院:我能采摘别人技能重生2010:不一样的人生戒不掉的喜欢重生后我不用做寡妇了你是我心里说不出的痛日娱之遇见那些人开局尘遁换木遁,我被全网笑惨了田园医女之傲娇萌夫惹不得不是直播民生吗,你怎么成全能了尊主的巨星之路四合院:秦淮茹,我对寡妇没有兴独家蜜婚:帝少宠妻太深度都市仙途异能反派,求求你给主角留点活路吧学园异战录喷人就变强:我怼哭了百万毒鸡汤命运两头设堵我却左右逢源贵夫临门祸害娱乐圈,你说自己是正经人?巨星大导演庶福良缘重生日本之剑道大魔王哼!我的总裁大人说好断绝关系,你们后悔算什么?我的人工智能可以升级御兽:我契约的都是上古禁忌彪妻重生重生1990,带着全村人发家致一拳和尚唐三藏快穿:宠妻男二走上人生巅峰总有人爱你如命大侠等一等抗战之我每天一个签到大礼包[综]一梦经年
爱看读书最新小说:开局加载未来剧本,仙帝求我指点逼我离婚?龙王赘婿震惊全城你要负责!是你说喜欢病娇的!穿越1935:我成了抗日铁军统铁血狂锋,开局被全球通缉村巷深处大一开学,我拥有神豪返现系统我在都市修了个野仙我答应做6个月女人,你要我嫁人民俗事务所:我请狐妖当秘书新战争与和平不是优势在我吗?怎么我成俘虏了官场:让你辞职下海,怎么入中枢铁血峰刃都市玄道抗战川军:你敢叫我杂牌军?望气:从雨夜生死一刻走来深渊也配凝视我!我的七个师姐全是幕后大佬娱乐奶爸:薛落,你家公司我买了让你参加国运,你读心把全球整崩伪人世界唯一正常人娱乐:抛弃师师,杨蜜哄我吃软饭权利的游戏,从派出所民警开始我的女友是武榜第一修个灯泡而已,怎么就成海王了开局偷家,缔造科技帝国旧物典当行:灵境摆渡人张易发老师解读书籍文字版分手费全仓沪铜期货的我成首富抖音每日的热搜故事不想下地狱的浅仓同学东北老猎人回忆录9岁的我敢在60年代,倒买倒卖地狱犬,开局承包战场源命:寻踪不会怀孕的女装小楠娘日常生活抗战:我奉化人,升职快点怎么了充电无限变强,馋哭同桌杂鱼萝莉重生:从OICQ到华为芯片帝国官方来了个魔修,我们没救了白塔倾倒之日开局20人,我在敌后创立根据地转职贝利亚,邪神说反派你来当重生军工:从玩具模型到真理导弹蓄谋已久!财阀老婆暗诱成欢被迫转业后,我搜刮了全球资源高武剑道:地球天才称霸全宇宙东北往事之富贵在天五八那年雁归巢